Effects of Dietary Supplementation of Carnosine on Mitochondrial Dysfunction, Amyloid Pathology, and Cognitive Deficits in 3xTg-AD Mice

نویسندگان

  • Carlo Corona
  • Valerio Frazzini
  • Elena Silvestri
  • Rossano Lattanzio
  • Rossana La Sorda
  • Mauro Piantelli
  • Lorella M. T. Canzoniero
  • Domenico Ciavardelli
  • Enrico Rizzarelli
  • Stefano L. Sensi
چکیده

BACKGROUND The pathogenic road map leading to Alzheimer's disease (AD) is still not completely understood; however, a large body of studies in the last few years supports the idea that beside the classic hallmarks of the disease, namely the accumulation of amyloid-β (Aβ) and neurofibrillary tangles, other factors significantly contribute to the initiation and the progression of the disease. Among them, mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties. METHODOLOGY In this study, we explored the effect of L-carnosine supplementation in the 3xTg-AD mouse, an animal model of AD that shows both Aβ- and tau-dependent pathology. PRINCIPAL FINDINGS We found that carnosine supplementation in 3xTg-AD mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Aβ and completely rescues AD and aging-related mitochondrial dysfunctions. No effects were found on tau pathology and we only observed a trend toward the amelioration of cognitive deficits. CONCLUSIONS AND SIGNIFICANCE Our data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease.

Mitochondrial dysfunction has been proposed to play a pivotal role in neurodegenerative diseases, including Alzheimer's disease (AD). To address whether mitochondrial dysfunction precedes the development of AD pathology, we conducted mitochondrial functional analyses in female triple transgenic Alzheimer's mice (3xTg-AD) and age-matched nontransgenic (nonTg). Mitochondrial dysfunction in the 3x...

متن کامل

Intraneuronal Aβ Causes the Onset of Early Alzheimer’s Disease-Related Cognitive Deficits in Transgenic Mice

Progressive memory loss and cognitive dysfunction are the hallmark clinical features of Alzheimer's disease (AD). Identifying the molecular triggers for the onset of AD-related cognitive decline presently requires the use of suitable animal models, such as the 3xTg-AD mice, which develop both amyloid and tangle pathology. Here, we characterize the onset of learning and memory deficits in this m...

متن کامل

Targeting therapy for homocysteic acid in the blood represents a potential recovery treatment for cognition in Alzheimer's disease patients

At present, we have no reliable means of recovering cognitive impairment in Alzheimer's disease (AD) patients. We hypothesized that homocysteic acid (HA) in the blood might represent one such pathogen that could be excreted into the urine. Since DHA is known to reduce circulating levels of homocysteine, and since exercise attenuates this effect, it follows that supplementation of the diet with ...

متن کامل

Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease.

Neural stem cell (NSC) transplantation represents an unexplored approach for treating neurodegenerative disorders associated with cognitive decline such as Alzheimer disease (AD). Here, we used aged triple transgenic mice (3xTg-AD) that express pathogenic forms of amyloid precursor protein, presenilin, and tau to investigate the effect of neural stem cell transplantation on AD-related neuropath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011